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Forward

We have pioneered new measurement techniques using coherent atom optics (such as
beam-splitters, mirrors and lenses) to manipulate matter waves. During this grant period
we built an improved atom interferometer which splits deBroglie waves of matter into
two physically separate paths and then recombines the waves to make interference fringes

of matter. Using this apparatus our experiments are extremely sensitive to any forces on
the atoms.
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Statement of the problem studied

During this grant period we completed experiments on quantum decoherence, we have
nearly finished an experiment on the matter-wave index of refraction, and we invented an
improved measurement technique for atomic polarizability. These three research topics
and a summary of the most important results are each explained in a sub-section below.

Decoherence
Decoherence is of fundamental theoretical importance for any quantum system
interacting with its environment, and it is the major practical obstacle for large scale
quantum computing. Our three recent experiments on decoherence test various scaling
laws and provide new insight on wave-particle duality.

We studied decoherence in a system which is simple enough that the measured
decoherence rate constant can be compared with ab initio calculations [KRCO01] for the
first time. This offers a benchmark measurement supporting several quite general
theories of decoherence (many of which are directly relevant to quantum computation
efforts). This recent experiment broadens the scope of our earlier, pioneering work on
decoherence due to spontaneous photon emission [CHL95] by exploring decoherence as
a function of the number, n, of photons scattered from each atom. Scattering multiple
photons causes the same time-evolution of decoherence as interaction with a thermal

bath, and is theoretically similar to any situation where the quantum system undergoes
multiple independent scattering events.




The heart of this experiment is the principle of complementarity, which forbids
simultaneous observation of wave and particle behavior. Our results confirm that the
atomic interference (a manifestly wave-like behavior) is destroyed when the separation of
the interfering paths, d, exceeds the wavelength of the probe, A, (i.e. when it is possible to
1dentify which path the atom traversed). Building upon the simple framework of the
single-photon which-way experiment, we can easily derive the effect of continuous atom-

light interaction involving many independent scattered photons. Figure 1 summarizes our
results.

In the photon scattering experiment, decoherence depends on quantum entanglement
between an atom (which is referred to as the “system”) and the final momentum of the
scattered photons (which collectively constitute the “environment™). In a second
experiment, we replaced the random process of photon scattering with a deterministic
momentum transfer caused by a diffraction grating. In this case, loss of contrast still
occurs, but less abruptly as a function of separation, and this de-phasing arises from a
qualitatively different reason. The atom’s own longitudinal momentum plays the role of
the environment. This mechanism may not qualify as quantum decoherence, because
entanglement between two degrees of freedom of a single particle can never demonstrate
what Einstein referred to as “spooky action at a distance”.

Finally, we studied how an atom’s internal state controls its own decoherence rate.
Because the same environment that causes decoherence can also optically pump atoms
into an internal state which will no longer scatter laser light, the atom’s internal
(electronic) state can determines the rate of external (spatial) decoherence.

Matter-wave index of refraction
We measured the matter-wave index of refraction for Na waves passing through targets
of Ar, N2, Kr, and Xe gasses. In analogy to the transmission of light through materials,
atom-waves passing through a dilute gas suffer a dispersive phase shift, We measure the
ratio, p =Re(n)/Im(n), of phase shift to amplitude attenuation.

We have observed oscillations in p as a function of Na velocity. Much theoretical work
has been stimulated by our earlier measurements of p [SCE95], and there are conflicting
predictions on the dependence of p on velocity [ADV95, FYKO97]. The variance in the
predictions arises because p is very sensitive to both long-range (>5 Angstrom) and
medium-range (0.5 to 5 Angstrom) atom-atom interactions. By studying oscillations in

p (which have never before been observed) we hope to constrain the theoretical models
of van der Waals molecular potentials.

Electronic phase chopping

We have prototyped a novel atom optic, which we are using for dispersion compensation.
Velocity multiplexing using a pair of slotted wheels was previously proposed for
improving experiments on dispersive interactions [HPC95]. While this could improve
absolute measurements of atomic polarizability [ESC95], spinning mechanical disks have
disadvantages such as: vibrations, reliability, mechanical timing alignment, and a
reduction of atom flux to %. Our new dispersion compensation method uses two compact




electric-field gradients, which can be electronically pulsed to give a variable phase shift
to atoms with different velocity. This technology should retain 100% of the atom flux, be

widely tunable, and ultimately improve measurement accuracy for any dispersive phase
shift.
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Figure 1. Improved apparatus. The critical components of the atom interferomeier'are suspended on a
vibrationally isolated platform (ndicated as a solid grey ) within the center of the vacuum system.
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Figure 2: Decoherence experiment diagram. Scattering photons from atoms inside the interferometer destroys the
coherence between the two paths of the interferometer — thus reducing fringe contrast
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Figure 3: Decoherence data from multiple photon scattering. The relative contrast diminishes as a complicated

function of path separation (d) when the numbrer of photons scattered from each atom (n) is less than two or three.
With larger n, the contrast decays as a gaussian function of d.
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Figure 5: Matter wave index of refraction at different velocities. The variation in the index of refraction indicates a
first-ever observation of glory oscillations in the phase shift.




Y

High-voltage
square wave

Figure 6: Dispersion compensators. Two regions of electric field gradient each can produce a 180 degree phase
change in the interference fringes. By pulsing the voltage on and off in time, we create a situation where contrast
revivals can occure. Soon we will use this to improve precision measurements with atom interferometers.
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Figure 7: Contrast revivals as a function of frequency indicate the dispersion compensators are working properly.




